Unexpected products resulting from reactions of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\boldsymbol{\eta}^{5}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)^{2+}$ ($\mathrm{Me}_{2} \mathrm{~T}=2,5$-dimethylthiophene) with $\left(\mu-\mathrm{S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{2-}\right.$ and $(\mu-\mathrm{CO})(\mu-\mathrm{RS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$

Deparmem of Chemistry und Ames Laboratory, Lowa State University, Ames, IA 5001J. USA

Received 24 August 1995; in revised form 22 January 1996

Abstract

The reactions of $\mathrm{Cp} \cdot \operatorname{Ir}\left(\eta^{5}-2,5-\mathrm{Me}_{2} \mathrm{~T}^{2+}(1)\right.$ with $(\mu-\mathrm{S})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{n}^{2-}$ and $(\mu-\mathrm{CO})\left(\mu-n-\mathrm{BuS}^{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$. which are expected to result in either reduction of 1 or nucleophilic attack on the η^{5}-2,5-dimethylthiophene ring, yield products that contain the reduced $\mathrm{Cp} \cdot \operatorname{Ir}\left(\eta^{4} \cdot 2.5-\mathrm{Me}_{2} \mathrm{~T}\right)(2)$ ligand. X ray diffraction studies of the products $\mathrm{Cp}{ }^{*} \operatorname{lr}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu-\mathrm{S}_{2}\right)\right)(6)$ and $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4} \cdot 2.5\right.$ $\left.\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu-\mathrm{S}^{\mathrm{n}} \mathrm{Bu}\right)_{2}\right)(9)$ show that the $\mathrm{Cp}{ }^{-} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ is coordinated through its sulfur atom to an Fe atom of the $\mathrm{Fe}_{2}(\mu-\mathrm{S})_{2}(\mathrm{CO})_{4}$ dimer core. Reaction of 2 with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(4)$ leads to a completely different product 7 in which the two bridging sulfur atons of the $\mathrm{Fe}_{2}(\mu-\mathrm{S})_{2}(\mathrm{CO})_{4}$ core are bonded at two carbons of a rearranged $2,5-\mathrm{Me}_{2} \mathrm{~T}$ ligand. Characterization and mechanisms of formation of the new compounds are discussed.

Kevurords: Iridium; Iron; Thiophene; Sulfur; Hydrodesulfurization; Pentamethylcyclopentadienyl

1. Introduction

In comnection with studies of the mechanism of thiophene hydrodesulfurization (HDS), we [$1-4]$ and others [5-9] have explored reactions of thiophene coordinated in transition metal complexes. Among the many reported reactions are those that result from nucleophilic addition to η^{5}-thiophene ligands. Examples include attack at C(2) [10,11] (Eq. (1)) or at sulfur [12] (Eq. (2)) in $\left(\eta^{s}-\mathrm{T}\right) \mathrm{Mn}(\mathrm{CO})_{3}^{+}$, at $\mathrm{C}(2)$ with $\mathrm{C}-\mathrm{S}$ bond cleavage (Eq. (3)) $[13,14]$ in ($\eta^{5}-\mathrm{T}$) RuCp p^{+}, and at sulfur or $\mathrm{C}(2)$ (Eq. (4)) in $\mathrm{Cp}{ }^{*} \mathrm{Rh}^{(} \eta^{5}-\mathrm{Me}_{4} \mathrm{~T}^{2+} \quad$ (where $\mathrm{Me}_{4} \mathrm{~T}=$ tetramethylthiophene) [15,16]. Of special relevance to the present studies are reactions of $\mathrm{Cp}{ }^{\cdot} \operatorname{lr}\left(\eta^{3}-2,5-\right.$ $\mathrm{Me}_{2} \mathrm{~T}^{2+}$ (1), where $2.5-\mathrm{Me}_{2} \mathrm{~T}$ is 2.5 -dimethylthiophene. This dication reacts [17] with OH^{-}to give products analogous to those obtained from $\mathrm{Cp}{ }^{*} \mathrm{Rh}\left(\eta^{5}\right.$ -

[^0]$\left.\mathrm{Me}_{4} \mathrm{~T}\right)^{2+}$ (Eq. (4)). It reacts with two equivalents of LiR $(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ to give $\mathrm{Cp} \cdot \mathrm{lt}\left(2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot 2 \mathrm{R}\right)$ [17]. It undergoes a two-eiectron reduction (Eq. (5), step (1)) when treated with two equivalents of $\mathrm{Cp}_{2} \mathrm{Co}$ or $\mathrm{Na}\left[\mathrm{H}_{2} \mathrm{Al}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMc}\right)_{2}\right]$ [18.19]. Both isomers 2 and 3 are products of this reduction, but 3 is the more stable because 2 rearranges (Eq. (5), step (2)) to 3 in the presence of catalysts such as bases [19] or ultraviolet light [20].

In the present study, we explore reactions of the dication 1 with $(\mu-S)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{2-}$ and $(\mu-\mathrm{CO})(\mu-n-$ $\mathrm{BuS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$in order to determine whether these iron-carbonyl-sulfide dimers react as nucleophiles or as reducing agents. The dianion $\left(\mu-\mathrm{S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{2-}\right.$ is obtained from ($\left.\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(4)$ by reduction [21] with $\mathrm{LiBEt}_{3} \mathrm{H}$ (Eq. (6)), while ($\left.\mu-\mathrm{CO}\right)\left(\mu-n-\mathrm{BuS}^{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}\right.$ is generated [22] from $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ as shown in Eq . (7). In general [23], it is the bridging sulfides that are the nucleophilic centers in $(\mu-S)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{2-}$. In contrast, in $(\mu-\mathrm{CO})(\mu-n-\mathrm{BuS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$either the bridging carbonyl oxygen or the iron may be the nucleophilic

center, depending on the other reactant [23,24]. In their reactions with $\mathrm{Cp}{ }^{\prime} \operatorname{Ir}\left(\eta^{3}-2.5-\mathrm{Me}_{2} \mathrm{~T}\right)^{2+}$ (1), these nucleophiles do not give products resulting from simple nucleophilic attack or reduction; instead, quite unexpected tri-metal compounds are obtained.

2. Experimental section

2.1. General procedures

All reactions were peiformed under dry oxygen-free N_{2} with use of standard Schlenk techniques. Solvents
employed were dried and distilled under N_{2}; tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were dried over potassium or sodium benzophenone ketyl; hexanes and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over CaH_{2}. The neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Brockmann, Activity I) used for column chromatography was deoxygenated under high vacuum at room temperature for 16 h, deactivated with $5 \%(w / w) \mathrm{N}_{2}$-saturated water, and stored under N_{2}. Phenyl lithium (2.0 M solution in cyclohexane- $\mathrm{Et}_{2} \mathrm{O}$), lithium hydride, triethylborane (1.0 M solution in hexanes), 1-butanethiol(n-BuSH), $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ were purchased from Aldrich Chemical Co. $\left[\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{5}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)\left(\mathrm{BF}_{4}\right)_{2}\right.$ (1), $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\right.$ $\mathrm{Me}_{2} \mathrm{~T}$) (2), and $\mathrm{Cp}^{*} \operatorname{Ir}\left(C, S-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)(3)$ were prepared as previously described [18,19]. (μ-Dithio)bis(tricarbonyliron), ($\left.\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (4), was prepared by the literature method [25]. All elemental analyses were performed by Galbraith Laboratory, Inc. The infrared spectra were recorded in the region $2200-1600 \mathrm{~cm}^{-1}$ on a Perkin-Elmer 681 spectrophotometer. All ${ }^{1} \mathrm{H}$ NMR spectra were recorded at ambient temperature on samples in CDCl_{3} solution with CHCl_{3} as an internal reference, using a Nicolet NT-300 spectrometer. Electron ionization mass spectra (EIMS) were run on a Finnigan 4000 spectrometer. The melting points were measured in sealed, nitrogen-filled capillaries and are uncorrected.
2.2. Reaction of 1 with $\left(\mu-\mathrm{LiS}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right.$ to give $C p^{\prime} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{4}\left(\mu-S_{2}\right)\right)$ (5) and $C p^{\top} \operatorname{Ir}\left(\eta^{4}-2,5 \cdot \mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu-S_{2}\right)\right)(6)$

To a suspension of $\mathrm{LiH}(0.042 \mathrm{~g}, 5.28 \mathrm{mmol})$ in THF $(20 \mathrm{ml})$ was added $0.180 \mathrm{~g}(1.83 \mathrm{ml}, 1.84 \mathrm{mmol})$ of BEt_{3} (1.0 M solution in hexanes). The mixture was heated for $3-4 \mathrm{~h}$ at $65^{\circ} \mathrm{C}$. The resulting solution was cooled to room temperature; then the excess of LiH was removed by filtration. The resulting solution of $\mathrm{LiBEt}_{3} \mathrm{H}$ [26] was added dropwise with vigornus stirring to a solution of ($\left.\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.260 \mathrm{~g}, 0.756 \mathrm{mmol})$ in THF (20 ml) cooled to $-78^{\circ} \mathrm{C}$ over a period of 30 min . The dark-red solution quickly tumed green. After 15 min stirting at $-78^{\circ} \mathrm{C}$, the resulting solution of (μ $\mathrm{LiS})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}[21,25]$ was cooled to $-100^{\circ} \mathrm{C}$. To this solution was added $0.460 \mathrm{~g}(0.750 \mathrm{mmol})$ of 1 with vigorous stirring. The reaction solution was permitted to warm slowly to $-78^{\circ} \mathrm{C}$ and was stirred at this temperature for 1 h and then warmed at -60 to $-40^{\circ} \mathrm{C}$ for an additional 6 h during which time the green solution turned green-yellow gradually. After removal of the solvent under high vacuum at -20 to $-10^{\circ} \mathrm{C}$, the black residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral) with hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) as the eluant. A purple-red band was eluted first: then a green band was eluted with hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ (10:1:1). After vacuum re-
moval of the solvents from the above two eluates, the residues were recrystallized from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$. From the first fraction was obtained 0.251 g (44%, based on 1) of 6 as dark-red crystals (m.p. $237-240^{\circ} \mathrm{C}$, decomp). $\mathbb{R}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \boldsymbol{\nu}(\mathrm{CO}): 2040$ vs, 1978 vs, $1960 \mathrm{~s}, \mathrm{br}, 1920 \mathrm{~m} \mathrm{~cm}^{-1}$. H NMR (CDCl_{3}): $\delta 4.48$ (s, 2 H), 1.93 ($\mathrm{s}, 15 \mathrm{H}$), 1.25 (s, 6 H). MS: m / e $440\left(\mathrm{M}^{+}-\left(\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{5}\right), 316\left(\left(\mathrm{~S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{5}^{+}\right)$. Anal. Found: C, 33.46; $\mathbf{H}, 3.23 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Fe}_{2} \mathrm{IrO}_{5} \mathrm{~S}_{3}$. Calc.: C, 33.39; H, 3.07\%. From the second fraction, 0.084 g (15%, based on 1) of 5 were obtained (m.p. 218-220 ${ }^{\circ} \mathrm{C}$, decomp.). IR($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu(\mathrm{CO}): 1970 \mathrm{~s}, \mathrm{br}, 1935 \mathrm{vs}, 1900$ $\mathrm{s}, \mathrm{brcm}{ }^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}^{2}\left(\mathrm{CDCl}_{3}\right): \delta 4.66(\mathrm{~s}, 2 \mathrm{H}), 1.96(\mathrm{~s}$, $15 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}: m / e 440\left(\mathrm{M}^{+}\right.$ $\left.-\left(\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{4}\right)$. Anal. Found: $\mathrm{C}, ~ 33.18 ; \mathrm{H}, 3.29$. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{Fe}_{2} \mathrm{IrO}_{4} \mathrm{~S}_{3}$. Calc.: C, 32.99; $\mathrm{H}, 3.18 \%$.
2.3. Reaction of $C p^{*} \operatorname{lr}\left(\eta^{4}-2,5-M e, T\right)$ (2) with (μ $\left.\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ to give $C p^{*} \operatorname{Ir}(\mathrm{C}(\mathrm{Me})=\mathrm{CHCH}=\mathrm{C}(\mathrm{Me}))$. $\left(\mu-S_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{5}(7)$

To a solution of $2(0.030 \mathrm{~g}, 0.068 \mathrm{mmol})$ dissolved in 30 ml of THF at $-60^{\circ} \mathrm{C}$ was added $0.027 \mathrm{~g}(0.078$ $\mathrm{mmol})$ of $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. The red solution immedi-
ately turned green. After the solution was stirred for 6 h at -60 to $-50^{\circ} \mathrm{C}$, the solvent was evaporated under vacuum and the residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral) with hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$ as the eluant. A green band was eluted and collected. After the solvent was removed in vacuo, the crude product was recrystallized from hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$ to give 0.024 g (48%, based on 2) of 7 as dark-green crystals (m.p. > $230^{\circ} \mathrm{C}$, decomp.). $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \boldsymbol{\nu}(\mathrm{CO}): 2158 \mathrm{~m}, 2128 \mathrm{~m}$, 2040 vs, 1928 vs, $1922 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): δ 3.66 (d, 1 H), 2.49 (d, 1 H), 1.86 (s, 15 H), 1.79 (s, 3 H), 1.58 ($\mathrm{s}, 3 \mathrm{H}$). MS: $m / e 756\left(\mathrm{M}^{+}\right), 728\left(\mathrm{M}^{+}-\mathrm{CO}\right)$, $700\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 672\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 644\left(\mathrm{M}^{+}-4 \mathrm{CO}\right)$, 616 ($\mathrm{M}^{+}-5 \mathrm{CO}$), $440\left(\mathrm{M}^{+}-\mathrm{Fe}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{5}\right)$. Anal. Found: C, 35.70; $\mathrm{H}, 3.80 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Fe}_{2} \mathrm{IrO}_{5} \mathrm{~S}_{3} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$. Calc.: C, 36.10; H, 3.79\%.
2.4. Reaction of $\mathrm{Cp}^{2} \operatorname{Ir}\left(\mathrm{C}, \mathrm{S},-2,5-\mathrm{Me}_{2} \mathrm{~T}\right.$) (3) with (μ $\left.\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ to give 7 and $\mathrm{Cp} \cdot \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T}\right)(\mu-$ $\left.\mathrm{S}_{2}\right) \mathrm{Fe}_{2}\left(\mathrm{CO}_{4}\right)$ (8)

To a stirred solution of $3(0.033 \mathrm{~g}, 0.075 \mathrm{mmol})$ in THF (30 ml) was added $0.030 \mathrm{~g}(0.087 \mathrm{mmol})$ of ($\left.\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ at $-60^{\circ} \mathrm{C}$. The red solution quickly

Table 1
Crystal and data collection parameters for 6, 7, and 9

	6	7	9
Empirical formula	$\mathrm{IrFe}_{2} \mathrm{~S}_{3} \mathrm{O}_{3} \mathrm{C}_{21} \mathrm{H}_{23}$	$1 \mathrm{lFe} \mathrm{S}_{2} \mathrm{~S}_{3} \mathrm{O}_{3} \mathrm{C}_{24} \mathrm{H}_{30}$	$\mathrm{IrFe}_{2} \mathrm{~S}_{3} \mathrm{O}_{3} \mathrm{C}_{29} \mathrm{H}_{41}$
Formula weight	755.50	798.59	869.70
Crystal color, habit	red. plate-like	black, chunk	red, irregular plate
Crystal system	triclinic	triclinic	triclinic
Crystal size (mm^{3})	$0.19 \times 0.14 \times 0.05$	$0.10 \times 0.10 \times 0.10$	$0.18 \times 0.08 \times 0.02$
Lattice paranelers			
$a(A)$	10.013(2)	12.605(5)	9.679(4)
$h(\mathbb{X})$	10.814(2)	13.419(6)	10.834(2)
$c(\AA)$	13.136(2)	8.692(5)	16.712(3)
α (deg)	72.34(1)	97.92(5)	95.41(1)
β (deg)	67.13(2)	103.22(4)	102.10(3)
$\boldsymbol{\gamma}$ (deg)	84.64(1)	83.11 (4)	94.50(3)
$v\left(A^{3}\right)$	1248.3(4)	1422(1)	1696.9(8)
Space group	$\boldsymbol{P} \overline{1}$	PII	PI
Z	2	2	2
d(calc) $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.010	1.865	1.702
$\mu\left(\mathrm{cm}^{-1}\right)$	67.16	59.03	162.02
Diffractometer	Enraf-Nonius CAD4	Rigaku AFC6R	Siemens P4RA
Radiation (monochromated)	Mo K $\alpha(\lambda=0.71073 \AA)$	Mo K $\alpha(\lambda=0.71069 \AA)$	$\mathrm{CuKa}(\lambda \pm 1.5418 \AA)$
No. of reflections used for unit cell delermination (2θ range)	25 (18.0-34.5 ${ }^{\circ}$)	25 (20.2-24.4 ${ }^{\circ}$)	25 (34.0-50.00)
Temperature (${ }^{\circ} \mathrm{C}$)	-70(1)	23(1)	-60(1)
Scan method	$\theta-2 \theta$	$\omega-2 \theta$	$\omega-2 \theta$
Data collection range, 2θ (deg)	4-50	3.0-50.1	5.4-113.9
No. unique data	4365 (3121, $J>3 \sigma_{l}$)	5029 (1540, $\left.1>3.0 \sigma_{1}\right)$	4559 (3298, $\left.I>3 \sigma_{l}\right)$
No. parameters refined	289	187	401
Trans factors, max, min (ψ scans)	0.9996-0.6471	1.00-0.78	0.976-0.565
Extinction parameter	0.320 .040	-071, 0.079	3.5×10^{-4}
$R, R w^{\text {a }}$	0.032, 0.040	0.071, 0.079	0.064, 0.159
Goodness of fit ${ }^{\text {b }}$	1.00	1.80	1.17
Largest shift/esd, final cycle	< 0.01	0.79	0.018
Largest peak (e \AA^{-3})	1.5	1.8	1.8

Table 2
Atomic coordinates and equivalent isotropic displacement parameters (${ }^{2}$) for 6

Atom	\boldsymbol{x}	y	$=$	$B\left(\AA^{2}\right)^{3}$
Ir	$0.28555(3)$	0.85222(3)	$0.25616(3)$	$1.899(6)$
$\mathrm{Fe}(1)$	$0.6135(1)$	0.4812(1)	0.27427(9)	2.01(2)
$\mathrm{Fe}(2)$	$0.7920(1)$	$0.3681(1)$	$0.13314(9)$	2.30 (3)
S(1)	0.4542(2)	$0.6321(2)$	$0.3226(2)$	2.09(4)
S(2)	0.7407(2)	0.5794(2)	0.0875(2)	2.76 (5)
S(3)	0.5813(2)	0.4524(2)	$0.1225(2)$	2.87 (5)
O(31)	$0.7948(6)$	$0.5264(6)$	$0.3888(5)$	3.6 (1)
O(32)	0.4456(8)	$0.2694(7)$	$0.4674(6)$	4.4(2)
O(33)	$0.6934(8)$	$0.1123(7)$	$0.2961(6)$	4.6 (2)
O(34)	$0.9566(7)$	0.2977(7)	-0.0799(5)	4.3(2)
O(35)	$1.0331(6)$	0.3805(6)	$0.2028(5)$	$3.5(2)$
C(1)	0.6267(9)	0.8651(8)	$0.2286(7)$	3.1(2)
C(2)	0.5034(8)	0.7943(8)	$0.2278(6)$	2.2(2)
C(3)	0.4768(9)	0.8125(9)	$0.1232(7)$	2.8 (2)
C(4)	$0.3597(9)$	0.7241(8)	$0.1492(7)$	2.7(2)
C(5)	$0.3082(8)$	0.6505(8)	$0.2716(6)$	2.4 (2)
C(6)	0.1933(9)	0.5470(9)	$0.3256(8)$	3.5(2)
C(II)	$0.0566(8)$	0.9025(8)	$0.3184(7)$	2.7(2)
C(12)	$0.110(1)$	0.8850(9)	0.4077(7)	3.0 (2)
C(13)	$0.2216(8)$	0.9817(8)	$0.3674(6)$	2.60 (
C(14)	0.2357(8)	1.0583(8)	0.2550(7)	2.7(2)
C(15)	0.1328(9)	$1.0111(8)$	0.2249(7)	2.7(2)
C(2I)	-0.068(1)	0.828(1)	$0.3256(9)$	5.0.3)
C(22)	0.056 (1)	0.789(1)	0.5278(8)	5.2(3)
C(23)	$0.308(1)$	$1.002(1)$	0.4348(8)	5.4 (2)
C(24)	$0.336(1)$	1.1798(9)	0.1842(9)	4.1 (3)
C(25)	$0.111(1)$	1.068(1)	$0.1136(7)$	4.2(2)
C(3)	0,7220(9)	0.5090(8)	$0.3455(6)$	2.5(2)
C(3)	0,5101(9)	$0.3536 \times 8)$	$0.391687)$	2.5(2)
C(3,3)	0,7316(9)	0.2123(9)	0,2309(7)	3,09)
C(34)	0.88R3(9)	0.3288(9)	$0.0004(7)$	2.9(2)
C(35)	0.9387(9)	0.3744(8)	$0.1754(7)$	2,90)

${ }^{3}$ In this and sueceding tables, anivotropically fefined atoms afe given in the form of the tsotropte displacement parametre deflned as: $\left.\beta=4 / 3\left(a^{2} \beta_{11}+b^{2} \beta_{2 j}+c^{2} \beta_{11}\right)^{2} a\right) \beta_{12} \cos \gamma+2 \operatorname{de} \beta_{1} \cos \beta+$子he $\beta_{5} \cos \alpha$).
turned dark-green. After stirring for 6 h at -60 to $-50^{\circ} \mathrm{C}$, the solvent was removed under vacuum. The dark-green residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral) with hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) as the eluant. The green band which eluted first was collected; then a purple-red band was eluted with hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{Et} 2 \mathrm{O}(10: 1: 1)$. After vacuum removal of the solvents from the above two eluates, the residues were recrystallized from hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$. From the first fraction. $0.013 \mathrm{~g}\left(24 \%^{2}\right.$, based on 3) of dark-green crystals of 7 were obtained (m.p. $>230^{\circ} \mathrm{C}$. decomp.): its IR and 'H NMR spectra are the same as given above. From the second fraction was obtained 0.016 g (29%, based on 3) of 8 as dark green crystals (m.p. $130-132^{\circ} \mathrm{C}$, decomp.). $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \boldsymbol{u}(\mathrm{CO}): 2159 \mathrm{~m}$. 2127 m .2053 s .2000 vs cm^{-1}. 'H NMR (CDCl_{3}): δ 7.69 (dd, 1 H), 7.52 (dd, I H), 2.29 (s, 3 H), 1.96 (s. 3
$\mathrm{H}), 1.88(\mathrm{~s}, 15 \mathrm{H}) . \mathrm{MS}: m / e 728\left(\mathrm{M}^{+}\right), 440\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{Fe}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{4}\right)$. Anal. Found: $\mathrm{C}, 33.21 ; \mathrm{H}, 3.07$. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{Fe}_{2} \mathrm{IrO}_{4} \mathrm{~S}_{3}$. Calc.: C. 32.90; $\mathrm{H}, 3.18 \%$.

2.5. Reaction of 1 with $\mathrm{Et}_{3} \mathrm{NH}\left((\mu-\mathrm{CO})\left(\mu-n-\mathrm{BuS}^{2}\right) \mathrm{Fe}_{2}-\right.$ $\left.(\mathrm{CO})_{6}\right]$ to give $\mathrm{Cp}^{*} \operatorname{Ir} \eta^{\dagger}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{5}(\mu$ $\left.S^{n} B u\right)_{2}$) (9) and $C p^{*} \operatorname{Ir}\left(C, S-2,5-\mathrm{Me}_{2} T\right)(C O)$ (10)

To a solution of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}(0.33 \mathrm{g} .0 .66 \mathrm{mmol}$.$) in 25$ ml of THF was added $0.060 \mathrm{~g}(0.67 \mathrm{mmol})$ of $1-$ butanethiol ($n-\mathrm{BuSH}$) and $0.066 \mathrm{~g}(0.65 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ at room temperature. The mixture was stirred at room temperature for $30-40 \mathrm{~min}$ during which time the solution turned from green to orange-brown in color. The resulting brown-red solution of $\mathrm{Et}_{3} \mathrm{NH}[(\mu-\mathrm{CO})(\mu-n-$ $\mathrm{BuS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$] [22] was added to a suspension of 1

Table 3
Atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for 7

Atom	x	y	Σ	$B_{\text {eql }}{ }^{\text {a }}$	
Ir	$0.0638(2)$	$0.2263(2)$	$0.4017(2)$	2.3(1)	
$\mathrm{Fe}(1)$	$-0.2190(5)$	0.2349(5)	$0.0733(8)$	3.3(4)	
$\mathrm{Fe}(2)$	-0.3774(5)	$0.1886 \times 6)$	$0.1684(8)$	3.4(3)	
S(1)	-0.24\%(1)	0.282(1)	$0.317(1)$	$3.2(6)$	
S(2)	-0.230(1)	0.078(1)	$0.136(1)$	3,4(6)	
S(3)	-0,035(1)	0.198(1)	$0.135(1)$	$3.5(6)$	
O(1A)	- 0.26062$)$	0.1642 2	$=0.265(4)$	4.688	
O(1B)	$=0.2360 .3)$	0.441(4)	$0.008(5)$	O(1)	
OPA)	$\left.=0.5{ }^{2} 4.3\right)$	$0.368(3)$	0.109(5)	H(1)	
O2B)	$=0.498(.3)$	0.081(3)	$=0.122(4)$	7(1)	
O(2C)	$=0.460(1)$	0. $11+13$	$0.415(4)$	O(1)	
CY(A)	$=0.250 .1)$	0.193(3)	$=0.131(5)$	3(1)	
C(1B)	$-0.229(5)$	(0.358(6)	$0.038(7)$	$8(2)$	
C(2A)	-0.463(5)	0.299(5)	$0.133(6)$	6(1)	
C(2B)	-0.456(5)	$0.119(5)$	-0.013(8)	$8(2)$	
C(2C)	-0.432(4)	$0.145(4)$	$0.327(6)$	511)	
C(3)	$-0.011(4)$	0.107(4)	$0.283(5)$	4(1)	
C(3A)	$0.042(4)$	0.008(4)	$0.233(5)$	$4(1)$	
C(4)	$-0.124(3)$	$0.101(3)$	0.323(4)	$1.688)$	
C(5)	-0.151(3)	$0.1903)$	0.430(5)	3(1)	
(6)	$=0.04\left(\begin{array}{l}\text { a }\end{array}\right.$	0.245(4)	0.50006	5(1)	
C(6A)	-0.062(3)	$0.307(3)$	0.659(5)	3(1)	
(7)	$0.225(3)$	0.220(3)	$0.340(4)$	1.1(8)	
C(7A)	0.252(4)	$0.171(4)$	$0.191(6)$	6 (1)	
C(8)	$0.231(3)$	$0.179 \times 4)$	0.474(5)	$3(1)$	
($(8 A)$	$0.281(4)$	0.077(4)	$0.5146)$	$5(1)$	
(9)	$0.207(3)$	$0.252(3)$	$0.589(5)$	3(1)	
C(9A)	$0.212(5)$	$0.253(5)$	$0.765(8)$	1022	
C(10)	0.17931	$0.346(4)$	$0.524(5)$	3(1)	
C(10A)	$0.151(5)$	$0.451(5)$	$0.597(7)$	$8(2)$	
C(II)	$0.189(3)$	0.322(4)	$0.375(5)$	3(1)	
$C(\\| A)$	$0.169(5)$	$0.401(5)$	$0.247(7)$	$9 \times 2)$	
C(1)	$0.462(8)$	0.45669	$0.53(1)$	147)	
C(13)	$0.535(7)$	$0.396(5)$	$0.635(9)$	12(5)	
C(14)	0.474(5)	$0.331(5)$	$0.695(9)$	$9(4)$	

[^1]Table 4
Alomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement paramelers $\left(\AA^{2} \times 10^{3}\right)$ for 9

Alom	x	y	$=$	$U_{\text {eq }}{ }^{\text {a }}$
Ir	998(1)	1953(1)	4014(1)	44 (1)
S(1)	2012(4)	364(3)	2799(2)	41(1)
C(1)	4191(18)	1119(14)	4224(9)	67(5)
C(2)	2638(15)	817(12)	3883(8)	41(3)
C(3)	1683(20)	233(13)	4292(9)	57(5)
C(4)	$282(23)$	9(13)	3812(10)	66(5)
C(5)	337(14)	516(13)	3048(8)	38(3)
C(6)	-949(18)	467(15)	2335(11)	72(5)
$\mathrm{Fe}(1)$	2394(2)	-1538(2)	2295(1)	41(1)
C(101)	709(20)	-2350(14)	221918)	55(4)
O(101)	-406(14)	-2873(11)	2191(8)	83(4)
C(102)	3125(17)	-1959(12)	3277(9)	44(4)
$\mathrm{O}(102)$	3588(13)	-2242(9)	3910(6)	62(3)
$\mathrm{Fe}(2)$	4520(3)	-854(2)	1734(2)	55(1)
C(201)	4833(19)	808(17)	1970(13)	72(5)
O(201)	5060(16)	1840(12)	2094(10)	100(5)
C(202)	5515(23)	-1028(20)	947(13)	89(7)
O(202)	6159(19)	-1139(17)	442(10)	128(6)
$\mathrm{C}(203)$	5730(20)	-1044(16)	2630(11)	68(5)
O(203)	6523(14)	-1107(12)	$3254(8)$	84(4)
S(2)	3533(5)	-2861(3)	1614(2)	$53(1)$
C(21)	4613(24)	-3837(16)	2287(10)	84(6)
C(22)	5883(28)	-4300(24)	1933(15)	121(9)
C(23)	5655(34)	- $4937(30)$	$1175(14)$	157(13)
C(24)	$6819(32)$	- 5579(32)	939(16)	178(16)
S(3)	2244(5)	-618(4)	1117(2)	57(1)
C(31)	1566(25)	- 1676(17)	185(9)	$84(6)$
C(32)	-73(23)	- 1997(17)	72(10)	8446
C(33)	- $714(40)$	-2787(22)	-718(14)	137(12)
C(34)	-2146(50)	-3125(62)	-821(25)	79(23)
C(33')	-714(40)	-2787(22)	-718(14)	137(12)
C(34')	- $1019(102)$	-44i3(47)	-582(35)	256(66)
C(II)	1637(20)	$3016(23)$	4991 (10)	44(7)
C(12)	74: 20$)$	3317(23)	4810(11)	42(7)
C(13)	$-49(\times 18)$	3470(22)	$3935(13)$	fly (8)
C(14)	732(18)	$3841(21)$	$3565(11)$	$48(8)$
C(15)	$2058(17)$	$3918(20)$	421.3(12)	$52(8)$
C(16)	261 + (33)	3759(37)	$5815(14)$	$77(8)$
C(17)	- 795(37)	$3064(40)$	5435(20)	107(12)
C(18)	-2013(23)	3282(39)	$3497(21)$	94(10)
C(19)	$614(41)$	$4162(33)$	$2707(13)$	98(12)
C(20)	3525(10)	$4348(8)$	4154(5)	$83(9)$
C(11)	1968(10)	3767(10)	4767(5)	49(8)
C(12)	715(10)	$3308(10)$	5065(5)	48(8)
C(13)	-578(10)	3245(8)	4364(7)	52(8)
C(14)	-145(10)	3600 (11)	3609(6)	44(7)
C(15)	1432(10)	3967(11)	3877(6)	42(7)
C(16)	$3419(10)$	3899 (10)	5324(5)	94(10)
C(17)	619(31)	3084(25)	5906 (11)	$98(12)$
C(18)	-2076(18)	2921(27)	4420)(17)	$83(9)$
$\mathrm{C}(19)$	-984(25)	3672(27)	2776(11)	77(8)
$\mathrm{C}\left(20^{\prime}\right)$	2359(28)	4467(27)	3357(15)	107(12)

${ }^{2}$ Equivalent isotropic U defined as one-third of the trace of the orhogonalized $U_{i j}$ lensor.
$(0.20 \mathrm{~g}, 0.33 \mathrm{mmol})$ in 30 ml of THF at $-70^{\circ} \mathrm{C}$ with vigorous stirring. The reaction solution turned red immediately. After the mixture was stirred at -70 to $10^{\circ} \mathrm{C}$
for 8 h , the solvent was removed in vacuo, and the dark-red residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral) with hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$ as the eluant. A deep-red band eluted first; then an orange band was eluted with hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ (10:1:1). After vacuum removal of the solvents from the above two eluates, the residues were recrystallized from hexanes$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$. From the first fraction, 0.185 g (65%, based on 1) of 9 as deep-red crystals were obtained (m.p. $132-134^{\circ} \mathrm{C}$, decomp.). IR(hexanes) $\nu(\mathrm{CO}): 2031 \mathrm{vs}, 1980$ vs, $1965 \mathrm{~s}, 1952 \mathrm{~s}, 1918 \mathrm{~m}$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.64$ (d, 1 H$), 4.59$ (d, 1 H), 1.34 (s, 6 H$), 1.92(\mathrm{~s}, 15 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.34$ $(\mathrm{m}, 8 \mathrm{H}), 0.87(\mathrm{t}, 6 \mathrm{H}) . \mathrm{MS}: m / e 813\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$, $758\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}-2 \mathrm{CO}\right)$. Anal. Found: C, $40.69 ; \mathrm{H}$, 4.95. $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{Fe}_{2} \mathrm{IrO}_{5} \mathrm{~S}_{3}$. Calc.: C, $40.05 ; \mathrm{H}, 4.75 \%$. From the second fraction, $0.031 \mathrm{~g}(20 \%$, based on 1$)$ of 10 [27] as orange crystals were obtained (m.p. 121$122^{\circ} \mathrm{C}$, decomp.). IR(hexane) $\nu(\mathrm{CO}): 2020 \mathrm{~s} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.79(\mathrm{~d} .1 \mathrm{H}), 5.45(\mathrm{~d}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}), 1.97$ (s, 3 H), 1.88 ($\mathrm{s}, 15 \mathrm{H}$). MS: m/e 468 (M^{+}).

2.6. Photolytic reaction of 9 to give 10

A solution of $9(0.025 \mathrm{~g}, 0.029 \mathrm{mmol})$ in 20 ml of THF in a quartz photolysis tube was photolyzed with a $450 \mathrm{~W}, 254-\mathrm{mm}$ lamp for 20 h during which time the deep-red solution gradually turned orange-red. The solvent was removed in vacuo, and the residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral) with hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) as the eluant. The orange band was eluted and collected. After removal of the solvent, the residue was reerystallized from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$ to give $0.010 \mathrm{~g}(80 \%$, based on 9$)$ of orange crystals of 10 which was identified by its melting point. and IR and ${ }^{1} H$ NMR spectra [27].

2.7. X-ray crystal structure determinations of 6.7. and 9

Crystals of complexes 6. 7 and 9 suitable for X-ray diffraction studies were obtained by recrystallization

Table 5
Selected bond lengths (\mathbb{X}) for $\mathrm{Cp}{ }^{\circ} \operatorname{Ir}\left(\eta^{4} \cdot 2.5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{9}\left(\mu-\mathrm{S}_{2}\right)\right)$ (6) with e.s.d.s

$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.553(2)$	$\mathrm{Ir}-\mathrm{C}(2)$	$2.132(8)$
$\mathrm{Fe}(1)-\mathrm{S}(1)$	$2.228(2)$	$\mathrm{Ir}-\mathrm{C}(3)$	$2.146(9)$
$\mathrm{Fe}(1)-\mathrm{S}(2)$	$2.239(3)$	$\mathrm{Ir}-\mathrm{C}(4)$	$2.150 \times 8)$
$\mathrm{Fe}(1)-\mathrm{S}(3)$	$2.252(3)$	$\mathrm{Ir}-\mathrm{C}(5)$	$2.128(9)$
$\mathrm{Fe}(1)-\mathrm{C}(31)$	$1.780(9)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.52(1)$
$\mathrm{Fe}(1)-\mathrm{C}(32)$	$1.76(1)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.45(1)$
$\mathrm{Fe}(2)-\mathrm{S}(2)$	$2.243(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.45(1)$
$\mathrm{Fe}(2)-\mathrm{S}(3)$	$2.257(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.46(1)$
$\mathrm{Fe}(2)-\mathrm{C}(33)$	$1.76(1)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.48(1)$
$\mathrm{Fe}(2)-\mathrm{C}(34)$	$1.79(1)$	$\mathrm{S}(1)-\mathrm{C}(2)$	$1.797(9)$
$\mathrm{Fe}(2)-\mathrm{C}(35)$	$1.77(1)$	$\mathrm{S}(1)-\mathrm{C}(5)$	$1.804(8)$

Table 6
Selected bond angles (deg) for $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4} \cdot 2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu-\mathrm{S}_{2}\right)\right)(6)$ with e.s.d.s

$\bar{C}(31)-\mathrm{Fe}(1)-\mathrm{C}(32)$	94.5(4)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{S}(1)$	154.42(8)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{S}(2)$	55.19(7)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{S}(2)$	55.36(7)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{S}(3)$	55.41 (7)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{S}(3)$	$55.60(7)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(33)$	92.5(3)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(31)$	$101.2(3)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(34)$	159.0(3)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(32)$	104.3(3)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(35)$	95.6 (3)	$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{S}(2)$	$101.51(9)$
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{S}(3)$	53.5(1)	$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{S}(3)$	103.29(9)
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{C}(33)$	145.7(3)	$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{C}(31)$	94.6(3)
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{C}(34)$	107.4 (3)	S(1)-Fe(1)-C(32)	94.2 (3)
S(2)-Fe(2)-C(35)	100.2(3)	$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{S}(3)$	53.6(1)
S(3)-Fe(2)-C(33)	100.8(3)	S(2)-Fe(1)-C(31)	103.7(3)
S(3)-Fe(2)-C(34)	105.8(3)	S(2)-Fe(1)-C(32)	154.7(3)
S(3)-Fe(2)-C(35)	147.8(3)	$\mathrm{S}(3)-\mathrm{Fe}(1)-\mathrm{C}(31)$	153.3(3)
C(33)-Fe(2)-C(34)	101.0(5)	$\mathrm{S}(3)-\mathrm{Fe}(1)-\mathrm{C}(32)$	103.7(3)
C(33)-Fe(2)-C(35)	93.5(4)	$S(1)-C(5)-C(4)$	110.037)
$\mathrm{C}(34)-\mathrm{Fe}(2)-\mathrm{C}(35)$	99.5(4)	S(1)-C(5)-C(6)	118.67)
$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	115.4(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	123.1(9)
$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	115.7(3)	S(1)-C(2)-C(1)	118.4(6)
$C(2)-S(1)-C(5)$	83.3(4)	$S(1)-C(2)-C(3)$	$111.4(7)$
$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{Fe}(2)$	69.45(8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.0 (8)
$\mathrm{Fe}(1)-\mathrm{S}(3)-\mathrm{Fe}(2)$	68.99(8)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.4(8)
		$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	109.2(7)

from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-80^{\circ} \mathrm{C}$. In each case, a crystal of the compound whose structure was to be determined was mounted on the end of a glass fiber in a random orientation. The crystal was then placed on a four-circle diffractometer and cell constants and crystal system determined by an automated search routine. Each of the molecules was found to crystallize in the triclinic crystal system.

Data were collected within a 20 sphere of 50° for 6 and 7 using Mo Ka radiation and within a 20 sphere of 114^{9} for 9 using $\mathrm{Cu} \mathrm{K} a$ radiation (Table I). In order to try to partially compensate for small crystal size and weak diffracting power, rotating anode sources were used for 7 and 9. In all cases intensity data were

Table 7
Selected bond lengths (A) for Cp ${ }^{1}$ ITC(Me) $\left.\mathrm{CHCH}=\mathrm{CM}\right)(\mu$ -$S\left(\mu_{-S} S_{2}\right) \operatorname{Pe}_{2}(\mathrm{CO})_{3}(7)$ with e.s.d.s

$\mathrm{fr}-\mathrm{S}(3)$	$2.38(1)$	$\mathrm{Fe}(2) \mathrm{Cl}(2 \mathrm{C})$	1.87(5)
$1 \mathrm{r}-\mathrm{C}(3)$	1.98(5)	$\mathrm{S}(1)-\mathrm{C}(5)$	1.88(4)
$\mathrm{IP}=\mathrm{C}^{(6)}$	1.77(5)	S(2)-C(4)	$1.87(4)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.514(9)	S(3)-C(3)	$1.88(5)$
$\mathrm{Fe}(1)=S(1)$	2.23 (1)	C(3)-C(3A)	1.49(6)
$F \mathrm{~F}(1)=S(2)$	2.28 (1)	C(3)-C(4)	$1.58(5)$
$F \mathrm{~F}(1)=S(3)$	2.28 (1)	C(4)-C(5)	1.50(5)
$\mathrm{Fe}(1)-\mathrm{C}(1 \mathrm{~A})$	1.76(4)	C(5)-C(6)	1.56(6)
$\mathrm{Fe}(1)=\mathrm{CO}$ ($)$	1.701\%	C(6)-C(6A)	$1.55(5)$
Fe(2)-S(1)	2.23 (1)	C(12) - $\mathrm{C}(12)^{\circ}$	$1.60{ }^{\text {a }}$
$\mathrm{Fe}(2)-\mathrm{S}(2)$	2.29 (1)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.4(1)*
$\mathrm{Fe}(2)-\mathrm{Cl}(2 \mathrm{~A})$	$1.75(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	1.4(1) ${ }^{\text {a }}$
$\mathrm{Fe}(2)-\mathrm{C}(2 \mathrm{~B})$	1.86(7)		

${ }^{\circ} \mathrm{C}(2), \mathrm{C}(13)$, and $\mathrm{C}(14)$ are carbons in the latice n-hexane molecules. $\mathbf{C (1 2) ^ { * }}$ is the symmetry generated partner of C 12 .
corrected for absorption using empirical ψ scans and also corrected for Lorentz-polarization effects. Compound 9 was also corrected for extinction. Equivalent deta were merged.

Table 8
Selected bond ungles (deg) for $\mathrm{Cp}^{-} \mathrm{l}(\mathrm{C}(\mathrm{Me}) \mathrm{CHClI}=(\mathrm{Me}) \times \mu$ -

If $=C(6)=C(6 A)$	$132(3)$	$C(2 C) \operatorname{cr}(2)=S(1)$	10×2)
Ir $=\mathrm{C}(6)-\mathrm{C}(5)$	$123(3)$		10042)
$C(6 A)-C(6)=C(5)$	105(4)	$S(1)-\mathrm{Fe}(2)-S(2)$	82.3(5)
$\mathrm{C}(6)=1 \mathrm{f}-\mathrm{C}(3)$	$8332)$	$S(1)=\mathrm{Fe}(2)-\mathrm{Fc}(1)$	55.7(4)
$C(6)=[\mathrm{r}-\mathrm{S}(3)$	$99(2)$	$S(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	56.4(4)
$C(3)=[\mathrm{r}-5(3)$	50(1)	$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(2)$	68.5(4)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{Fe}(1)-C(1 A)$	92(3)	$\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{Fe}(1)$	91(1)
$C(1 B)=F e(1)-S(1)$	$91(2)$	$\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{Fe}(2)$	106(1)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{Fe}(1)-S(2)$	171(2)	$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{Fe}(2)$	$66.8(4)$
C(1B)-Fe(1)-S(3)	101(2)	$\mathrm{C}(3)-S(3)-\mathrm{Fe}(1)$	105(2)
$\mathrm{C}(1 \mathrm{~B}) \mathrm{Fg}(1)=\mathrm{Fc}(2)$	114(2)	C(3)-S(3)-1r	54(1)
$C(1 A)=F e(1)-S(1)$	157(1)	$\mathrm{Fe}(1)=S(3)=1 \mathrm{r}$	120.5(6)
$C(1 A)-F(1)-S(2)$	92(2)	$C(3 A)-C(3)-C(4)$	114(4)
$C(1 A)-F(1)-S(3)$	102(1)	$C(3 A)-C(3)-S(3)$	11143)
$\mathrm{C}(1 \mathrm{~A}) \mathrm{Fe}(1)-\mathrm{Fe}(2)$	103(1)	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{lr}$	126(3)
S(1)-Fe(1)-S(2)	82.6(5)	$\mathrm{C}(4) \mathrm{C}(3)-5(3)$	105(3)
$S(1)-F+(1)-S(3)$	99.6(5)	C(4) $\mathrm{C}(3) \mathrm{lr}$	$115(3)$
S(1) - $\mathrm{Fe}(1)-\mathrm{Fe}(2)$	55.8(4)	$\mathrm{S}(3)-\mathrm{C}(3)-\mathrm{Ir}$	76(2)
$S(2)-\mathrm{Fe}(1)=S(3)$	84.4(5)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	110(3)
S(2)-Fe(1)-Fe(2)	$56.8(4)$	C(5) -C(4)-S(2)	$115(3)$
$S(3)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	135.7(4)	$C(3)-C(4)-S(2)$	$112(3)$
$C(2 A)=F e(2)-C(2 B)$	$91(3)$	$C(4)-C(5)-C(6)$	107(4)
$C(2 A)-F e(2)-C(2 C)$	101(2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	108(3)
C(2A)-Fe(2$)-\mathrm{S}(1)$	9022	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)$	104(3)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{Fe}(2) \mathrm{S}(2)$	153(2)	$C(6 A)-C(6)-C(5)$	105(4)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{Fe}(2)-\mathrm{C}(2 \mathrm{Cl}$	101(2)	$C(6 A)-C(6)-\mathrm{lr}$	132(3)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{Fe}(2)-\mathrm{S}(1)$	158(2)	C(5)-C(6)-Ir	123(3)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{Fe}(2)-\mathrm{S}(2)$	88(2)	$\mathrm{C}(12) \mathrm{mC}(13)-\mathrm{C}(14)$	109(9)

Table 9
Selected bond lengths (\AA) for $\mathrm{Cp} \cdot \operatorname{lr}\left(\eta^{4}-2.5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{5}(\mu-\right.$ $\left.\mathrm{S}^{\mathrm{n}} \mathrm{Bu}\right)_{2}$ (9) with e.s.d.s

$\mathrm{Ir}-\mathrm{C}(3)$	$2.09(2)$	$\mathrm{S}(3)-\mathrm{C}(31)$	$1.81(2)$
$\mathrm{Ir}-\mathrm{C}(5)$	$2.09(1)$	$\mathrm{S}(2)-\mathrm{C}(21)$	$1.84(2)$
$\mathrm{Ir}-\mathrm{C}(2)$	$2.12(1)$	$\mathrm{Fe}(1)-\mathrm{C}(102)$	$1.76(2)$
$\mathrm{Ir}-\mathrm{C}(4)$	$2.14(2)$	$\mathrm{Fe}(1)-\mathrm{C}(101)$	$1.76(2)$
$\mathrm{S}(1)-\mathrm{C}(5)$	$1.77(1)$	$\mathrm{Fe}(2)-\mathrm{C}(203)$	$1.74(2)$
$\mathrm{S}(1)-\mathrm{C}(2)$	$1.79(1)$	$\mathrm{Fe}(2)-\mathrm{C}(202)$	$1.79(2)$
$\mathrm{S}(1)-\mathrm{Fe}(1)$	$2.240(4)$	$\mathrm{Fe}(2)-\mathrm{C}(201)$	$1.79(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.49(2)$	$\mathrm{Fe}(2)-\mathrm{S}(3)$	$2.274(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.40(2)$	$\mathrm{Fe}(2)-\mathrm{S}(2)$	$2.276(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.41(2)$	$\mathrm{Fe}(1)-\mathrm{S}(2)$	$2.244(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.45(2)$	$\mathrm{Fe}(1)-\mathrm{S}(3)$	$2.271(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.53(2)$	$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.521(3)$

In each case intensity statistics indicated $P \overline{1}$ as the most probable space group and this was later confirmed by successful refinement. The positions of the heavier atoms were found either by direct methods or by a combination of Patterson and direct methods. Remaining non-hydrogen atoms were found by difference electron density calculations; the largest residual peak was adjacent to the iridium atom. The structures were refined using full matrix least squares techniques [28] minimizing the function $\sum w\left(\left|F_{v}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ with $w=$ $1 / \sigma_{F}^{2}$. All non-hydrogen atoms were refined anisotropically for 6 and 9 . Owing to the poor scattering power of 7 and the lower number of observations, primarily the heavier atoms were refined anisotropically for 7.

Atomic coordinates and equivalent isotropic displacement parameters for 6,7 , and 9 are given in Tables 2. 3, and 4 respeetively. Selected bond lenghs and bond
angles for 6 are given in Tables 5 and 6 respectively, for 7 in Tables 7 and 8 respectively, and for 9 in Tables 9 and 10 respectively.

3. Results and discussion

3.1. Reaction of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\boldsymbol{\eta}^{5}-2,5-\mathrm{Me}_{2} T\right)^{2+}$ (1) with (μ $\mathrm{S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{2-}$

At -60° to $-40^{\circ} \mathrm{C}$ in THF solvent, 1 reacts with ($\mu-\mathrm{S})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{2-}$ over a 6 h period to give two products 5 and 6 , which were isolated in 15% and 44% yield respectively (Eq. (8)). The molecular structure (Fig. 1) of the higher yield product 6 was established by X-ray diffraction studies, which show that it is a derivative of ($\left.\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(4)$ in which one of the CO ligands is substituted by the S -donor $\mathrm{Cp}^{\prime}{ }^{\prime} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ (2). This sulfur lies approximately along the $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ axis with an $\mathrm{Fe}(2)-\mathrm{Fe}(\mathrm{I})-\mathrm{S}(1)$ angle of $154.42(8)^{\circ}$. Except for this $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ substitution, the structures of 4 [29] and the $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{5}$ portion of 6 are nearly the same as illustrated by the following parameters (the value for 6 is followed by the same parameter for 4): $\mathrm{Fe}(1)-\mathrm{Fe}(2)(2.553(2), 2.552(2) \AA)$. $\mathrm{S}(1)-\mathrm{S}(2)$ (2.025(5), 2.007(5)), average $\mathrm{Fe}-\mathrm{S}$ (2.242. 2.228), average $\mathrm{Fe}-\mathrm{S}-\mathrm{Fe}\left(69.23,69.88^{\circ}\right)$. The $\mathrm{Fe}(1)$ $S(1)$ distance (2.228(2) \AA) to the sulfur of the Cp ${ }^{\circ} \mathrm{hr}\left(\eta^{4}-2.5-\mathrm{Me}, \mathrm{T}\right)$ ligand is slightly shorter than the distances (2.230(3),2.252(3) \&) between Fe(1) and the bridging sulfur atoms. $S(2)$ and $S(3)$. The sutuctural

Table 10
Selected bond angles (deg) for $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2}{ }^{2} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu \cdot \mathrm{~S}^{n \mathrm{Bu}}\right)_{2}\right)(9)$

C(5) $-\mathrm{S}(1)=\mathrm{Fe}(1)$	$116.7(5)$	S(2)-Fe(1) - $\mathrm{Fe}(2)$	56.7 (1)
$C(2)-S(1)-\mathrm{Fe}^{(1)}$	$117.8(5)$	$\mathrm{S}(3) \sim \mathrm{Fe}(1) \mathrm{Fe}(2)$	56.4 (1)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	125(1)	$\mathrm{C}(203)-\mathrm{Fe}(2)-\mathrm{C}(202)$	104(1)
C(3)-C(2)-S(1)	108(1)	$\mathrm{C}(203)-\mathrm{Fe}(2)-\mathrm{C}(201)$	90.5(9)
C(1)-C(2)-S(1)	$119(1)$	$\mathrm{C}(202)-\mathrm{Fe}(2)-\mathrm{C}(201)$	$98.4(9)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	113(1)	$\mathrm{C}(203)-\mathrm{Fe}(2)-\mathrm{S}(3)$	147. $\times 7)$
C(4)-C(5)-C(6)	124(1)	$\mathrm{C}(202)-\mathrm{Fe}(2)-\mathrm{S}(3)$	$107.9(7)$
C(4)-C(5)-S(1)	111(1)	$\mathrm{C}(201) \mathrm{Fe}(2)-\mathrm{S}(3)$	$88.4(6)$
C(6)-C(5) - S ${ }^{\text {(1) }}$	117(1)	$S(3)-\mathrm{Fe}(2)-S(2)$	$80.2(2)$
$\mathrm{C}(102)-\mathrm{Fe}(1)-\mathrm{C}(101)$	$94.8(7)$	$\mathrm{C}(203)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	93.76
$\mathrm{C}(102)-\mathrm{Fe}(1)-\mathrm{S}(1)$	93.3(4)	$\mathrm{C}(202)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$149.3(8)$
$\mathrm{C}(102)-\mathrm{Fe}(1)-\mathrm{S}(2)$	95.0(4)	$\mathrm{C}(201)-\mathrm{Fe}(2) \mathrm{Fe}(1)$	$106.606)$
$\mathrm{C}(101)-\mathrm{Fe}(1)-\mathrm{S}(2)$	104.3(5)	S(3)-Fe(2)-Fe(1)	56.3 (1)
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{S}(2)$	153.3(2)	S(2) $\mathrm{Fe}(2) \mathrm{Fe}(1)$	55.5(1)
$\mathrm{C}(102)-\mathrm{Fe}(1)-\mathrm{S}(3)$	159.3(5)	$\mathrm{C}(21)-\mathrm{S}(2)-\mathrm{Fe}(1)$	113.3(6)
$\mathrm{C}(101)-\mathrm{Fe}(1)-\mathrm{S}(3)$	105.9(5)	$\mathrm{C}(21)-\mathrm{S}(2)-\mathrm{Fe}(2)$	$113.3(7)$ $67.8(1)$
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{S}(3)$	82.3(2)	$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{Fe}(2)$	67.8(1)
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{S}(3)$	80.9(2)	$\mathrm{C}(31)-\mathrm{S}(3)-\mathrm{Fe}(1)$	114.0.6)
$\mathrm{C}(102)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	104.5(5)	$\mathrm{C}(31)-\mathrm{S}(3)-\mathrm{Fe}(2)$	113.3 (7)
$\mathrm{C}(101)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	153.6(5)	$\mathrm{Fe}(1)-\mathrm{S}(3)-\mathrm{Fe}(2)$	$67.4(1)$
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	96.7(1)		

features of the $\mathrm{Cp}{ }^{*} \operatorname{lr}\left(\eta^{4}-2.5-\mathrm{Me}_{2} \mathrm{~T}\right)$ unit in 6 are very similar to those of this same unit when coordinated through sulfur to $\mathrm{Fe}(\mathrm{CO})_{4}[30] ; \eta^{4}$-thiophene ligands in $\mathrm{Cp}{ }^{*} \operatorname{Rh}\left(\eta^{4}-\mathrm{Me}_{4} \mathrm{~T}\right)$ [31]. ($\left.\eta^{5}-\mathrm{Me}_{4} \mathrm{~T}\right) \mathrm{Ru}\left(\eta^{4}-\mathrm{Me}_{4} \mathrm{~T}\right)$ [32], and (CO) ${ }_{3} \mathrm{Fe}\left(\eta^{4}-\mathrm{T}\right.$) [33] also form sulfur-coordinated complexes and their structures are very similar to that of $\eta^{4}-2.5-\mathrm{Me}_{2} \mathrm{~T}$ in 6 . The strong donor ability of the sulfur in these η^{4}-thiophene ligands has been explained in terms of an antibonding interaction between the metal and the sulfur [34]. In 6, the fold angle of the thiophene ring, defined as the dihedral angle between the $\mathbf{C}(2)$ -$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ and $\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)$ planes, is 36.6°; $S(1)$ is $0.803 \AA$ above the four-carbon plane. The $\mathrm{C}(2)$-through- $\mathrm{C}(5)$ and $\mathrm{C}(11)$-through- $\mathrm{C}(15)$ planes are nearly co-planar, as indicated by the 10.2° dihedral angle between them. The $C(2) \mathrm{m}$ and $\mathrm{C}(5)=S$ distances ($1.797(9), 1.804(8) \AA$) are the same, within experimental error, as those in the $\mathrm{Fe}(\mathrm{CO}),[30]$ complex but longer than the $\mathrm{C}-\mathrm{S}$ bonds ($1.714(1) \AA$) in thiophene itself [4].

In the 'H NMR spectrum of 6, the H(3) and $H(4)$ protons are observed at $\delta 4,48$, while the CH_{3} protons are at 81.25 . These chemical shifts are very similar to
those in $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}(\mathrm{CO})_{4}\right)$ whose corresponding chemical shifts are $\delta 4.54$ and 1.35 [30). The infrared spectrum of 6 in the $\nu(\mathrm{CO})$ region (2040 vs , 1978 vs, $1960 \mathrm{~s}, \mathrm{br}, 1920 \mathrm{~m} \mathrm{~cm}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) is very similar to that of the mono-phosphine-substituted derivative of $4 .\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu-\mathrm{S}_{2}\right)(2055 \mathrm{~s}, 1996 \mathrm{~s}$, $1986 \mathrm{~s}, 1975 \mathrm{w}, \mathrm{sh}, 1942 \mathrm{w}$ in CCl_{4}) [35]. However, the generally lower $\nu(\mathrm{CO})$ values in 6 indicate that the sulfur of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-2.5-\mathrm{Me}_{2} \mathrm{~T}\right)$ is a better electron-donor than PPh_{3}.

Crystals of 5 , the other product of reaction (8), were not suitable for X -ray studies. However, its ${ }^{1} \mathrm{H}$ NMR spectrum shows a singlet for $H(3)$ and $H(4)$ at $\delta 4.66$ and another singlet ($\delta 1.34$) for the CH_{3} groups at carbons 2 and 3. The lack of splitting and the positions (δ) of these signals are characteristic of a $\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{4}\right.$ -$2.5-\mathrm{Me}, \mathrm{T}$) ligand that is coordinated through the sulfur to one metal or possibly bridging two metals as in $\mathrm{Cp} \cdot \operatorname{lr}\left(\eta^{4}-2.5-\mathrm{Me}, \mathrm{T} \cdot \mathrm{Fe},(\mathrm{CO})_{7}\right)[30]$ or $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4} \cdot 2.5-\right.$ $\left.\mathrm{Me}, \mathrm{T} \cdot \mathrm{Mo}_{2}(\mathrm{CO})_{2} \mathrm{Cp}_{2}\right)$ [20,36]. The chemical shitts of $H(3,4)$ and the CH_{3} groups in $\mathrm{Cp} \cdot \ln \left(\eta^{+1}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right.$. $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$) occur at very similar values (84.80 and 1.24). The elemental analysis (\mathbf{C} and \mathbf{H}) of $\mathbf{5}$ is similar

Fig. I. Molecular structure of $\left.\mathrm{Cp}^{-} \operatorname{In} \eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mu-\mathrm{S}_{2}\right)\right)(6)$.

to that of 6 but $\nu(\mathrm{CO})$ bands in the infrared spectrum ($1970 \mathrm{~s}, \mathrm{br}, 1935$ vs, $1900 \mathrm{~s}, \mathrm{br} \mathrm{cm}{ }^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) of 5 are at lower wavenumbers than those in 6 , which is consistent with the replacement of a CO group in 6 by a sulfur donor ligand. The infrared spectrum of 5 is similar to the bis-phosphine-substituted 4, $\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{4}\left(\mu-\mathrm{S}_{2}\right)\right.$, which has $\boldsymbol{\nu}(\mathrm{CO})$ bands at $2006 \mathrm{~s}, 1958 \mathrm{~m}$, and $1943 \mathrm{~s} \mathrm{~cm}^{-1}$ in CCl_{4} [35]. Taken altogether, the spectroscopic data are consistent with the sulfur-bridging structure for 5 shown in Eq. (8), but this assignment must be regarded as tentative.

The mechanism of reaction (8) might be considered to involve an initial 2 -electron transfer from (μ $\mathrm{S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{2-}$ to $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{5}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)^{2+}$ to give $(\mu-$

Fig. 2. Molecular structure of $\mathrm{Cp} \cdot \operatorname{Ir}(\mathrm{C}(\mathrm{Me})=\mathrm{CHCH}=\mathrm{C}(\mathrm{Me}))(\mu$ S) $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{5}(7)$.
$\left.\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(4)$ and $\mathrm{Cp}^{*} \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ as either isomer 2 or 3 . Then, 4 could react with 2 or 3 to give the products 5 and 6 . However, this cannot be the mechanism since 4 reacts with 2 or $\mathbf{3}$ to give products other than 5 and 6, as discussed in the next section. At this point, any proposed mechanism for reaction (8) would be highly speculative.

3.2. Reactions of 2 and 3 with $\left(\mu-S_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (4)

In order to explote the possibility that reaction (8) proceeds via ($\left.\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (4) and $\mathrm{Cp}{ }^{\prime} \operatorname{lr}\left(2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ (2 or $\mathbf{3}$) as intermediates, 4 was allowed to react separately with 2 and 3. The reaction (Eq. (9)) with 2 run at $-60^{\circ} \mathrm{C}$ in THF solvent gave a new compound 7 in 48% isolated yield. While 7 has the same chemical composition as 6, their structures are completely different. In 7 (Fig. 2), the Ir is part of a five-membered ring including $C(3), C(4), C(5)$ and $C(6)$. All of the carbons in this ring are saturated except C(6), which is planar as indicated by the sum (360°) of the three angles around it . The short $\mathrm{Ir}=\mathrm{C}(6)$ bond distance ($1.77(5) \AA$) suggests that $\mathrm{C}(6)$ is a carbene carbon: this distance is even shorter than the $\mathrm{Ir}=\mathrm{C}$ double bonds (1.868(9) and $1.872(7) \AA$) in $\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2} \mathrm{Ir}=\mathrm{CH}_{2}$ [37] and $\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{Cl}_{3} \mathrm{Ir}=\mathrm{CCl}_{2}\right.$ [38], although the errors in 7 are relatively large. The $S(3)$ atom, which was presumably part of the $2,5-\mathrm{Me}_{2} \mathrm{~T}$ ligand in reactant 2. bridges the $\mathrm{Ir}-\mathrm{C}(3)$ bond like an episulfide but also coordinates to $\mathrm{Fe}(1)$. The $S(1)$ and $S(2)$ atoms, assumed to be part of 4 originally, are attached at $C(4)$ and $C(5)$. A similar attachment of the two sulfur atoms was reported [39] for complex A which forms in the reaction of 4 with cyclohexene. In fact, the structures of A and the (μ $\mathrm{S})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{5}$ portion of 7 are very similar, except that one of the two end CO groups in \mathbf{A} is replaced by the

episulfide in 7. A comparison of structural parameters follows (values for 7 are given first, then for A): $\mathrm{Fe}(1)-\mathrm{Fe}(2)(2.514(9), 2.496(2) \AA)$, average $\mathrm{Fe}(1)-\mathrm{S}-$ $\mathrm{Fe}(2)\left(67.6,67.6^{\circ}\right)$, and average $\mathrm{S}(1)-\mathrm{Fe}-\mathrm{S}(2)$ (82.4, 80.2°). The structure of the thiophene ring in 7 , with the sulfur atom bent out of the thiophene plane, is similar to that [40] of the tetramethylthiophene ring in [$\left(\eta^{6}-\right.$ $\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}\left(\mathrm{CpRu}^{\left.\left(\mathrm{SC}_{4} \mathrm{Me}_{4}\right)\right]^{+} \text {; it was suggested [40] that }}\right.$ the bent sulfur form may illustrate an intermediate in the process of the HDS of thiophenes.

The very mild conditions ($-60^{\circ} \mathrm{C}$) of reaction (9) and reasonable yield (48%) of 7 suggest that there is a facile pathway for this reaction. Complex 4 is known to undergo oxidative reactions [23,39] at the $\mathrm{S}-\mathrm{S}$ or $\mathrm{Fe}-\mathrm{Fe}$ bonds with electron-rich metal complexes; however, they seem not to be involved in reaction (9) since they do not lead to the observed product 7. In fact, there is no simple route involving precedented reactions of 2 and 4 that lead to 7. Eq. (10) gives an outline of a pathway that may serve as a framework for an initial understanding of reaction (9).

The ring-opened isomer 3 reacts with 4 under the sume conditions ($=60$ to $=50^{\circ} \mathrm{C}$ in THF for 6 h) as reaction (9) to give 7 and n new complex 8 in 24% and 29% isolaied yields respectively. The formation of 7 is not surprising since 2 and 3 often react to give the same products [20,30]. The structure of 8 is not known since we were unable to obtain Xray quality crystals. The parent ion (M^{+}) in its mass spectrum and C, H elemental analyses indicate a composition $\mathrm{Cp}^{*} \mathrm{Ir}^{\wedge} 2,5$. $\left.\mathrm{Me}_{2} \mathrm{~T}\right)\left(\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{4}$. The far downfield signals ($\delta 7.69$, 7.52) in the ${ }^{1} \mathrm{H}$ NMR spectrum of 8 are similar to those for $\mathrm{H}(3)$ and $\mathrm{H}(4)$ in $3(\delta 7.47,7.37)$. The $\nu(\mathrm{CO})$ absorptions ($2159 \mathrm{~m}, 2127 \mathrm{~m}, 2053 \mathrm{~s}, 2000 \mathrm{vs} \mathrm{cm}^{-1}$) of 8 are at higher values than those of 4 [41] or its monoor bis-phosphine-substituted derivatives [35], which suggests that the Fe atoms in 8 have been oxidized. At
this point, there is not sufficient evidence to assign the structure of 8.

3.3. Reaction of $C p^{*} \operatorname{Ir}\left(\eta^{5}-2.5-M e_{2} T\right)^{2+}$ (I) with $(\mu-$ $\mathrm{CO})(\mu-n-\mathrm{BuS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$

Since the bridging carbonyl oxygen and Fc atoms in the $(\mu-\mathrm{CO})(\mu-n-\mathrm{RS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$anions are known to be the nucleophilic centers toward a variety of electrophilic substrates [$22-24,42,43$], we expected the anion, where $\mathrm{R}=n-\mathrm{Bu}$, to react with 1 by nucleophilic attack on the $\boldsymbol{\eta}^{5}-2,5-\mathrm{Me}_{2} \mathrm{~T}$ ring. However, a totally different reaction (Eq. (11)) occurs at -70° to $10^{\circ} \mathrm{C}$; it gives 9 as the major product (65% yield) which is accompanied by a small amount (20%) of by-product 10 . The formation of 9 and 10 clearly indicate that 1 is reduced to 2 and 3 , which are incorporated into products 9 and 10 respectively. Since CO must also be liberated from (μ -$\mathrm{CO})(\mu-n-\mathrm{BuS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$in order to form 9 , product 10 probably forms by reaction of 3 with this $\mathrm{CO} ; 3$ is known $[27,30]$ to react with CO at $-30^{\circ} \mathrm{C}$ to form 10 . The formation of 9 requires the transfer of an n - BuS^{-} group from one anion dimer to another to give the ($\mu-n-\mathrm{BuS})_{2} \mathrm{Fe}_{2}$ core. It has been previously reported [22a,42,43] that reactions of the $(\mu-\mathrm{CO})(\mu$ $\mathrm{RS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$anions with organomercury compounds, HgR_{2} and $\mathrm{Hg}(\mathrm{R})(\mathrm{X})$, often give $(\mu-\mathrm{RS})_{2} \mathrm{Fe}(\mathrm{CO})_{6}$ byproducts; yields of these by-products range from 9 to 82%, usually exceeding 40%. Thus, there is an oxidative pathway that converts ($\mu-\mathrm{CO})(\mu-\mathrm{RS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$to ($\mu-\mathrm{RS})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. Details of the transfer of an RS ${ }^{-}$ group from one anion to another under these oxidative conditions are not known, but they appear to be occurring in both reaction (Il) and the reactions with organomercury compounds. It is unlikely that (μ-nBuS) $\mathbf{F P}_{2}(\mathrm{CO})_{6}$ is actually formed in reaction (11) as an intermediate which subsequently undergoes CO substitution by 2 to give 9 since substitution of CO in (μ-RS) $\mathbf{F e}_{2}(\mathrm{CO})_{6}$ by phosphines requires [44] more vigorous conditions (refluxing benzene or toluene); however, substitution reactions of $(\mu-\mathrm{RS})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ by sulfur donor ligands (SR_{2}) have not been tried. Thus, the formation of 9 in reaction (11) probably results from initial electron-transfer to 1 giving 2 and 3 , as well as some oxidized form of ($\mu-\mathrm{CO})(\mu-n-\mathrm{BuS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$

Fig. 3. Molecular structure of $\mathrm{Cp}{ }^{*} \operatorname{lr}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{5}(\mu-\right.$ $S^{n} \mathrm{Bu}_{2}$)(9).
which allows n-BuS ${ }^{-}$transfer and substitution of a CO group by 2 .

The molecular structure (Fig. 3) established by X-ray diffraction studies shows that 9 is a derivative of ($\mu-n$ $\mathrm{BuS})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ in which one of the four equivalent CO groups approximately trans to the bridging sulfur atoms is substituted by a sulfur-bound $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ (2) ligand. The structure of the ($\mu-n-\mathrm{BuS}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{5}$ part of 9 is very similar to that of $\left(\mu-\mathrm{ESS}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right.$ (B) [45]. In both B and 9, the alkyl groups (Et or n-Bu) are anti with respect to each other. In 9, the n - Bu group on the same side of the molecule as the $\mathrm{Cp}{ }^{*} \mathrm{Ir}^{(} \eta^{4}-2,5-$ $\mathrm{Me}_{2} \mathrm{~T}$ (2) ligand points away from this bulky ligand. The $(\mu-\mathrm{RS})_{2} \mathrm{Fe}_{3}(\mathrm{CO})_{5}$ portions of the molecules have basically the same geometries as indicated by the following parameters (the values for 9 are given first, then those for B): $\mathrm{Fe}-\mathrm{Fe}(2.521(3) ; 2.54(1) \mathrm{A}), \mathrm{Fe}-\mathrm{S}-\mathrm{Fe}$ (67.8, 67.4; 67.8, 68.9), S-Fe-S (80.9, 80.2; 81.6, 80.3°), C(102)-Fe(1)-S(3) (159.3; 160.0°).

The structure of the $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ (2) portion of 9 is very similar to that in 6 and the related molecules discussed with 6 above. The dihedral angle (39.9°) between the $C(2)-C(3)-C(4)-C(5)$ and $C(2)-S(1)-C(5)$ planes in 9 is similar to that $\left(36.6^{\circ}\right)$ in 6 . The $S(1)$ atom in 9 is $0.862 \AA$ out of the $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ plane, which compares with $0.803 \AA$ in 6 . Thus, the overall structures of 9 (Fig. 3) and 6 (Fig. 1) are similar except

for the different sulfur bridging ligands, $\left(\mu-S_{2}\right)$ in 6 and ($\mu-n-\mathrm{BuS})_{2}$ in 9. Also, the sulfur donor atom of the $\mathrm{Cp}{ }^{*} \operatorname{lr}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ ligand is coordinated at an end position (nearly on the $\mathrm{Fe}-\mathrm{Fe}$ axis) in 6 but in one of the four positions trans to the bridging sulfur atoms in 9.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 9 contains doublets at δ 4.64 and 4.59 for $\mathrm{H}(3,4)$ in the $2,5-\mathrm{Me}_{2} \mathrm{~T}$ ligand; the inequivalence of $H(3)$ and $H(4)$ presumably results from their diastereotopic character in this asymmetric structure. The methyl groups at $\mathbf{C}(2)$ and $\mathrm{C}(5)$ occur as a singlet at $\delta 1.34$. These chemical shifts for $\mathbf{H}(3,4)$ and the methyl groups are very similar to those ($\delta 4.48$ and 1.25) of 6 and related $\eta^{4}, \eta^{1}(S)-2,5-\mathrm{Me}_{2} \mathrm{~T}$ complexes.

The infrared spectrum of 9 exhibits $\nu(\mathrm{CO})$ bands at 2031 vs, 1980 vs, $1965 \mathrm{~s}, 1952 \mathrm{~s}, 1918 \mathrm{~m} \mathrm{~cm}^{-1}$; these compare with absorptions (2045 s , $1985 \mathrm{~s}, 1978 \mathrm{sh}$, $1969 \mathrm{~m}, 1935 \mathrm{w}, 1929 \mathrm{sh}$) for the mono-phosphine analog ($\mu-\mathrm{MeS})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)$ [44].

Although the structure of $(\mu-\mathrm{MeS}) \mathrm{Fe}_{2}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)$ has not been established, the similarity of its infrared spectrum to that of 9 suggests that it has the same structure. The positions of the $\nu(\mathrm{CO})$ bands in 9 are $5-15 \mathrm{~cm}^{-1}$ lower than those in $(\mu-\mathrm{MeS})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{5^{-}}$ $\left(\mathrm{PPh}_{3}\right)$, which suggests that $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{Me}_{2} \mathrm{~T}\right)$ is a better electron-donor ligand than PPh_{3}, a conclusion that was reached in the discussion of 6 in Section 3.1.

4. Conclusions

Reactions of the cation $\mathrm{Cp}^{*} \operatorname{lr}\left(\eta^{5}-2.5-\mathrm{Me}_{2} \mathrm{~T}\right)^{2+}$ (1) with $(\mu-S)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{2-}(\mathrm{Eq}$. (8)) and with ($\mu-\mathrm{CO})(\mu-$ $n-\mathrm{BuS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$(Eq. (11)) lead to products which contain either the $\mathrm{Cp}{ }^{+} \mathrm{Ir}^{\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)}$ (2) or $\mathrm{Cp}^{\cdot} \mathrm{Ir}^{-}$ (C,S-2,5-Me ${ }_{2}$ T) (3) units. Thus, both reactions result in the reduction of 1 to 2 or 3, a process that occurs more directly with reducing agents such as $\mathrm{Cp}_{2} \mathrm{Co}$ or $\mathrm{Na}\left[\mathrm{H}_{2} \mathrm{Al}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}\right]$ (Eq. (5)). However, in products of reactions (8) and (11), the reduced $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)(2)$ is coordinated through ifs sulfur to the $\mathrm{Fe}_{2}(\mu-\mathrm{S})_{2}(\mathrm{CO})_{4}$ dimer core in complexes 5, 6 and 9. In neither reaction (8) nor (11) is there evidence for nucleophilic attack of the ($\mu-\mathrm{S})_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{2-}$ or $(\mu-\mathrm{CO})(\mu-n-\mathrm{BuS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}^{-}$anion on the $\eta^{5}-2,5-\mathrm{Me}_{2} \mathrm{~T}$ ligand of 1 . The reaction (Eq. (9)) of 2 with the neutral ($\left.\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{9}(4)$ gives a totally different product (7) than that obtained from the corresponding cation and anion (Eq. (8)), which demonstrates that reaction (8) dees not proceed via 2 and 4 as intermediates.

5. Supplementary material

Tables of anisotropic displacement parameters for 6, 7, and 9 (5 pages) are available.

Acknowledgments

This research was supported by the Office of Basic Energy Sciences, Chemical Sciences and Material Sciences Divisions of the US Department of Energy under contract W-7405-Eng-82 to Iowa State University. We are grateful to Dr. Lee M. Daniels and Dr. Victor G. Young. Jr., of the Iowa State Molecular Structure Laboratory for determining the structures of compounds 6 and 9. We thank Johnson Matthey, Inc. for a loan of IrCl_{3}.

References and notes

[1] R.J. Angelici, in R.B. King (ed.), Encyclopedia of Inorganic Chemistry, Vol. 3. Wiley, New York, 1994 pp. 1433-1443.
[2] R.J. Angelici. Bull. Soc. Chim. Beig., 104 (1995) 265.
[3] J.W. Benson. G.L. Schrader and R.J. Angelici, J. Mol. Catal. A: Chem., 96 (1995) 283.
[4] R.J. Angelici, Coord. Chem. Rev., 105 (1990) 61.
[5] T.B. Rauchfuss, Prog. Inorg. Chem., 39 (1991) 259.
[6] R.A. Sanchez-Delgado, J. Mol. Cutal.. 86 (1994) 287.
[7] W.D. Jones, R.M. Chin, T.W. Crane and D.M. Baruch. Organometallics, 13 (1994) 4448.
[8] C. Bianchini, A. Meli, M. Peruzzini, F. Vizza, S. Moneti. V, Herrera and R.A. Sanchez-Delgado. J. Am. Chem. Soc., 116 (1994) 4370.
[9] J.J. Garcia, B.E. Mann. H. Adams, N.A. Bailey and P.M. Maitlis, J. Am, Chem, Soc., 117 (1995) 2179.
[10] D.A. Lesch, J.W. Richardson, Jr., R.A. Jacobson and R.J. Angelici, J. Am. Chem. Soc., 106 (1984) 2901.
[11] S.C. Huckett, N.N. Sauer and R.J. Angelici, Orgamometallics, 6 (1987) 591.
[12] J. Chen, V.G. Young, Jr, and R.J, Angelici, Orgammallicis. 15 (1996) 325.
[13] G.H. Sples and R.J. Angelici. Organométulles. 6 (1987) 1897.
[14] (a) J.W. Hachgenel and R,J. Angellel. J. Orgunomer, Chom, 353 (1988) 359. (b) J.W, Hachgenei and R.J. Angelici. Angew. Chew, ImR Ed. EAml, 36 (1987) 009.
[IS] A.B. Skaugset, T.B, Rauchtugs and S.R. Wilson. J. Am. Chem. SH: 1/4 (1992) 8521.
[16] A.E. Skaugset, T.B. Rauchness and C.L. Stern, d. Am, Chem.乌以 112 (1990) 2432
[17] J. Chen, Y, Su, R,A. Jacobson and R.J. Angelici, J. Organmert. Chem., in press.
[18] J. Chen and R.J, Angelici, Orgunometallics, 8 (1989) 2277.
[19] J, Chen, L.M. Daniels and R.J. Angelici, J. Am. Chem. Sax., 112 (1990) 199.
[20] J. Chen and R.J, Angelici, Appl, Organomef. Chem, 6 (1992) 479.
[21] D. Seyferth, L.-C. Song and R.S. Henderson, J. Am. Chem. Soc., 103 (1981)5103.
[22] (a) D. Seyferth, L.L. Anderson and W.M. Davis, J. Organomet. Chem., 459 (1993) 459. (b) D. Seyferth, G.B. Womack, C.M. Archer and J.C. Dewan, Organometallics, 8 (1989) 430.
[23] N.S. Nametkin, V.D. Tyurin and M.A. Kukina, Russ. Chem. Rev., 55 (1986) 439 (English translation).
[24] D. Seyterth, D.P. Ruschke, W.M. Davis, M. Cowie and A.D. Hunter, Organomerallics, 13 (1994) 3834.
[25] D. Seyferth, R.S. Henderson and L.-C. Song, Organometallics, I (1982) 125.
[26] (a) M. Fieser and L.F. Fieser, Reagents Org. Synth., 4 (1974) 313. (b) H.C. Brown and S. Krishnamurthy, J. Am. Chem. Soc., 95 (1975) 1669.
[27] (a) J. Chen, L.M. Daniels and R.J. Angelici, Polyhedron, 9 (1990) 1883. (b) J. Chen, L.M. Daniels and R.J. Angelici, Acta Crystallogr. Sect. C: 48 (1992) 2120.
[28] (a) Neutral atom scattering factors and anomalous scattering corrections were taken from International Fables for X-Ray Crysrallography, Vol. IV, Kynoch Press, Birmingham, UK, 1974. (b) Calculations were done using the Enraf-- Nonius Structure Determination Package for 6. the Tixsan-TExray Structure Analysis Package for 7, and the SHELXIL-Plus Package for 9.
[29] C.H. Wei and L.F. Dahl, fnorg, Chem., 4 (1965) 1.
[30] J. Chen, L.M. Daniels and R.J. Angelici, J. Am. Chem. Soc.. 113 (1991) 2544.
[31] S. Luo, A.E. Ogilvy, T.B. Rauchfuss, A.L. Rheingold and S.R. Wilson, Organumetallics, 10 (1991) 1002.
[32] S. Luo, T.B. Rauchfuss and S.R. Wilson, Organometallics, I/ (1992) 3497.
[33] M.-G. Choi and R.J. Angelici. Orsanometallics, 10 (1991) 2436.
[34] S. Harris, Organometallics, 13 (1994) 2628.
[35] R. Rosetti, G. Gervasio and P.L. Stanghellini, Inorg. Chim. Acta. 35 (1979) 73.
[36] J. Chen and R.J. Angelici, Orsanemetallics, 9 (1990) 879.
[37] M.D. Pryauk, P.A. MacNeil and S.J. Rettig, J. Am. Chem. Sive., 107 (1985)6708.
[JB] G.R. Clark, W.R. Roper and A.H. Wright, J. Orgunomet. Chem. 236 (19x2) C7.
[39] A. Kramer, R. Lingnau. I.-P. Lorens and H.A. Mayer, Chem. Har. 123 (19y0) 1821.
[40] K.M. Koczaju Duley, T.B. Rauchtuss, A.L. Khengold and G.P.A. Yap, J. Am. Chem. Sic.. 117 (1995) 6396.
[41] W.M. Scovell and T'S. Spiro. Inorg. Chem., 13 (1974) 304.
[42] D. Seyferth, L.L. Anderson, F*. Villafuike, M. Cowie and R.W. Hilts, Organometallics, // (1992) 3262.
[43] D. Seyferth, L.L. Anderson and W.M. Davis. J. Organomet. Chem., 459 (1993) 271.
[44] J.A. deBeer, R.J. Haines, R, Great and N.N. Greenwood, J. Chem. Sex. A, (1971) 3271.
[45] L.F. Dahl and C.-H. Wei, fhorg. Chem., 2 (1963) 328.

[^0]: - Corresponding author.
 ${ }^{1}$ Permanent address: Shanghai lnstitute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, People's Republic of China.

[^1]: ${ }^{3}$ Oniy Ir, Fe, S, and C(12), C(13), C(14) atoms were refined anisotropically.

